Abstract

Narrow-band emission is essential for applicable circularly polarized luminescence (CPL) active materials in ultrahigh-definition CP-OLEDs. One of the most promising classes of CPL active molecules, helicenes, however, typically exhibit broad emission with a large Stokes shift. We present, herein, a design strategy capitalizing on intramolecular donor-acceptor interactions between nitrogen and boron atoms to address this issue. 1,4-B,N-embedded configurationally stable single- and double helicenes were synthesized straightforwardly. Both helicenes show unprecedentedly narrow fluorescence and CPL bands (full width at half maximum between 17-28 nm, 0.07-0.13 eV) along with high fluorescence quantum yields (72-85 %). Quantum chemical calculations revealed that the relative localization of the natural transition orbitals, mainly on the rigid core of the molecule, and small values of root-mean-square displacements between S0 and S1 state geometries, contribute to the narrower emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.