Abstract

In this article, we address the problem of data privacy in multisource data mining. To do it, we present a new multiparty fully homomorphic encryption (MP-FHE) scheme, in which all participants are completely fair to perform the same computation. At first, the proposed MP-FHE scheme is divided into five stages (i.e., calculation, configuration, recombination, resharing, and reconstruction stage) to achieve the unified computation form of addition and multiplication. Meanwhile, random bivariate polynomials and commutative encryption are used to achieve the degree reduction of polynomials and the continuity of computation. Moreover, we prove that the scheme meets result consistency and program termination under the fail-stop adversary model. Especially, three kinds of error detection criteria are presented to find errors in three different stages (i.e., recombination, resharing, and reconstruction stage), which provides the monitor basis for the fail-stop adversary model. In addition, the MP-FHE scheme is applied into privacy preserving k-means clustering algorithm. Finally, we evaluate the computation and communication performance of our scheme from both theoretical and experimental aspects, and the evaluation results show that the scheme is efficient enough for multisource data mining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.