Abstract

With the surge of ubiquitous demand for high-complexity and quality mobile Internet-of-things (IoT) services, new cooperative relaying paradigms have emerged. Motivated by the long and unpredictable end-to-end communication in relay-aided IoT networks, there is a need to introduce novel modulation schemes for very low bit error rate (BER) communications. In this paper, a practical modulation mapping scheme has been proposed to reduce decoding errors. Specifically, a hybrid automatic repeat request (HARQ) system has been used with an intermediate relay to transfer a message from a source to a destination. The design of modulation mapping has been optimized by first formulating the objective as the quadratic assignment problem. Later, the solution to the mapping problem is provided using an iterative search method. To validate the proposed solution, extensive simulations have been performed in MATLAB. The results show that the proposed solution outperforms the conventional relay retransmission and the heuristic design approaches.

Highlights

  • The world is growing at a fast pace, and so is data

  • In order to formulate the quadratic assignment problem, we introduce binary variables

  • We provide an example of quadratic assignment problem-optimized modulation diversity for 16-QAM

Read more

Summary

Introduction

The agility and flexibility of big data applications are gradually shaping the Internet-of-things (IoT) [1]. These IoT devices feature unique identities and are accessible from anywhere in the world. Reliable exchange of data by IoT sensors and actuators is one of the biggest challenges faced when deploying an IoT system. This kind of device has evolved radically in the last years, battery life, computation and storage capacity remain limited [9]. This means that they are not suitable for running heavy applications; instead, it is necessary to resort to more powerful computing resources, likely owned by third parties

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.