Abstract

Ray tracing efficiently models complex illumination effects to improve visual realism in computer graphics. Typical modern GPUs use wide SIMD processing, and have achieved impressive performance for a variety of graphics processing including ray tracing. However, SIMD efficiency can be reduced due to the divergent branching and memory access patterns that are common in ray tracing codes. This paper explores an alternative approach using MIMD processing cores custom-designed for ray tracing. By relaxing the requirement that instruction paths be synchronized as in SIMD, caches and less frequently used area expensive functional units may be more effectively shared. Heavy resource sharing provides significant area savings while still maintaining a high MIMD issue rate from our numerous light-weight cores. This paper explores the design space of this architecture and compares performance to the best reported results for a GPU ray tracer and a parallel ray tracer using general purpose cores. We show an overall performance that is six to ten times higher in a similar die area.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.