Abstract

Recent work on early vision such as image segmentation, image denoising, stereo matching, and optical flow uses Markov Random Fields. Although this formulation yields an NP-hard energy minimization problem, good heuristics have been developed based on graph cuts and belief propagation. Nevertheless both approaches still require tens of seconds to solve stereo problems on recent PCs. Such running times are impractical for optical flow and many image segmentation and denoising problems and we review recent techniques for speeding them up. Moreover, we show how to reduce the computational complexity of belief propagation by applying the Four Color Theorem to limit the maximum number of labels in the underlying image segmentation to at most four. We show that this provides substantial speed improvements for large inputs, and this for a variety of vision problems, while maintaining competitive result quality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.