Abstract

Solar cells based on thin-film microcrystalline (μc-Si:H) or amorphous silicon (a-Si:H) with absorber layers in the micrometer range require highly efficient light trapping and an optimal incoupling of the entire sun spectrum. To investigate and optimize their optical properties the wave propagation in thin-film silicon solar cells is modelled in 3D solving the Maxwell equations rigorously. A periodic nanostructured texture with square based inverted pyramids is investigated as an alternative to the commonly used randomly rough texture. Different back contact designs were tested and their influence on the long wavelength light trapping was studied. A quasi-random light trapping structure that is composed of different pyramid period sizes was modelled and compared to a periodic single pyramid light trapping structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.