Abstract
Iris identification is a well‐known technology used to detect striking biometric identification techniques for recognizing human beings based on physical behavior. The texture of the iris is essential and its anatomy varies from individual to individual. Humans have distinctive physical characteristics that never change. This has resulted in a considerable advancement in the field of iris identification, which inherits the random variation of the data and is often a dependable technological area. This research proposes three algorithms to examine the classifications in machine learning approaches using feature extraction for the iris image. The applied recognition system used many methods to enhance the input images for iris recognition using the Multimedia University (MMU) database. Linear Discriminant Analysis (LDA) feature extraction method is applied as an input of three algorithms of machine learning approaches that are OneR, J48, and JRip classifiers. The result indicates that the OneR classifier with LDA achieves the highest performance with 94.387 % accuracy, while J48 and JRip reached to 90.151% and 86.885% respectively. Index Terms— Iris recognition, LDA, OneR, J48, JRip.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Iraqi Journal of Computer, Communication, Control and System Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.