Abstract
Appropriate input variables have to be selected for building highly accurate soft sensor. A novel input variable selection method based on nearest correlation spectral clustering (NCSC) has been proposed, and it is referred to as NCSC-based variable selection (NCSC-VS). Although NCSC-VS can select appropriate input variables, a lot of parameters have to be tuned carefully for selecting proper variables. The present work proposes a new methodology for efficient input variable selection by integrating NCSC and group Lasso. The proposed NCSC-based group Lasso (NCSC-GL) can not only reduce the number of tuning parameters but also achieve almost the same performance as NCSC-VS. The usefulness of the proposed NCSC-GL is demonstrated through applications to soft sensor design for a pharmaceutical process and a chemical process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.