Abstract

In languages such as High Performance Fortran (HPF), array statements are used to express data parallelism. In compiling array statements for distributed-memory machines, efficient enumeration of local index sets and commmunication sets is important. A method based on a virtual processor approach has been proposed for efficient index set enumeration for array statements involving arrays distributed using block-cyclic distributions. The virtual processor approach is based on viewing a block-cyclic distribution as a block (or cyclic) distribution on a set of virtual processors, which are cyclically (or block-wise) mapped to the physical processors. The key idea of the method is to first develop closed forms in terms of simple regular sections for the index sets for arrays distributed using block or cyclic distributions. These closed forms are then used with the virtual processor approach to give an efficient solution for arrays with the block-cyclic distribution. HPF supports a two-level mapping of arrays to processors. Arrays are first aligned with a template at an offset and a stride and the template is then distributed among the processors using a regular data distribution. The introduction of a nonunit stride in the alignment creates “holes” in the distributed arrays which leads to memory wastage. In this paper, using simple mathematical properties of regular sections, we extend the virtual processor approach to address the memory allocation and index set enumeration problems for array statements involving arrays mapped using the two-level mapping. We develop a methodology for translating the closed forms for block and cyclically distributed arrays mapped using a one-level mapping to closed forms for arrays mapped using the two-level mapping. Using these closed forms, the virtual processor approach is extended to handle array statements involving arrays mapped using two-level mappings. Performance results on the Cray T3D are presented to demonstrate the efficacy of the extensions and identify various trade-offs associated with the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.