Abstract

Sulfuration plays a decisive role in enhancing crystal growth and passivate defects in the fabrication of high-efficiency metal-sulfide solar cells. However, the traditional sulfuration process always suffers from high-price professional equipment, tedious processes, low activity of S, or high toxicity of H2S. Here, we develop a desired in situ sulfuration by introducing tartaric acid additive into the hydrothermal deposition process of Sb2S3. Tartaric acid, sodium thiosulfate, and potassium antimony tartaric can form Sb2Sx-contained (x > 3) as-prepared films. Encouragingly, the annealing becomes an inspiring in situ sulfuration process, which can obtain a more compact absorber layer. In addition, the crystallinity and defect property of the Sb2S3 film are also improved significantly. Finally, we achieve a high-performance Sb2S3 solar cell with a power conversion efficiency of 6.31%, which shows an encouraging enhancement of ∼15% compared with the traditional hydrothermal process. This study provides an innovative way to prepare high-efficiency Sb2S3 solar cells and provides a desirable guide to realize the in situ sulfuration process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.