Abstract
We report efficient hybrid white polymer light emitting devices (WPLEDs) fabricated via simple solution-proceeded process from a newly synthesized wide band-gap fluorene-co-dibenzothiophene-S,S-dioxide copolymer, which dually function as fluorescent blue emitter and host material for electrophosphorescent sky-blue, yellow, and saturated-red dyes. The Commission Internationale d’Énclairage coordinates of the best devices are (0.356, 0.334), with electroluminescence covered the entire visible light spectrum from 400 to 780 nm, resulting in a high color rendering index of 90. Incorporation of a bilayer electrode consisting of water/alcohol-soluble conjugated polymer and Al as electron-injection cathode boosts an enhancement of 50% in device efficiency, leading to external quantum efficiency of 12.6%, and peak power efficiency of 21.4 l m W−1 as measured in an integrating sphere. Both the efficiency and the color quality of the obtained device are ranking among one of the highest values for WPLEDs reported to date. Furthermore, as compared with those all-phosphorescent WPLEDs, the hybrid WPLEDs studied here exhibit a significantly reduced efficiency roll-off due to the very low doping concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.