Abstract

Efficient line-based architectures for two-dimensional discrete wavelet transform (2-D DWT) are presented in this paper. We first present a four-input/four-output architecture for direct 2-D DWT that 1-level decomposition of a N/spl times/N image could be performed in approximately N/sup 2//4 intra-working clock cycles (ccs), where the parallelism among four subbands transforms in lifting-based 2-D DWT is explored. By using this four-input/four-output architecture, we propose a novel pipelined architecture for multilevel 2-D DWT that can perform a complete dyadic decomposition of N/spl times/N image in approximately N/sup 2//4 ccs. Performance analysis and comparison results demonstrate that, the proposed architectures have faster throughput rate and good performance in terms of production of throughput rate and hardware cost, as well as hardware utilization. The proposed pipelined architecture could be an efficient alternative for high-speed and/or low-power applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.