Abstract

The synthetic aperture radar (SAR) image of ground moving target is easily defocused given the unknown relative motions between radar and target. In addition, the limitation of pulse repetition frequency for SAR easily induces the azimuth ambiguity (including Doppler center blur and spectrum ambiguity) of target signals, which causes the difficulty of moving target imaging. In this paper, a new efficient method for imaging and motion parameter estimation of ground moving targets with azimuth ambiguity is presented. Firstly, the time reversal process-2D scaled Fourier transform (TRP-2DSCFT) is developed to eliminate the effects of cross-track velocity and estimate the along-track velocity of target, simultaneously. Secondly, an operation based on discrete polynomial-phase transform and phase compensation function is proposed to estimate the cross-track velocity of target. Finally, a matched filter function based on estimated parameters is constructed to focus the moving targets. The well-focused result can be obtained by the presented method without the residual compensation errors. Moreover, the proposed method is computationally efficient given that the exhaustive searching steps are avoided. Additionally, the azimuth ambiguity can be effectively removed without the ambiguity number searching and pre-processing based on the prior information. The cross-terms for multiple target processing are analyzed. The effectiveness of the method is verified by both spaceborne and airborne real data results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.