Abstract

AbstractTwo‐dimensional (2D) direction‐of‐arrival (DOA) estimation is crucial in array signal processing. Compressed sensing (CS) provides a superior alternative to spatial spectrum estimation algorithms by enabling 2D DOA estimation of correlated sources from single snapshot data. However, the grid mismatch effect inherent in grid‐based CS algorithms impacts estimation accuracy. Despite recent advancements, the state‐of‐the‐art gridless CS algorithm, decoupled atomic norm minimization, is limited to specific 2D array geometries, such as uniform rectangular arrays. This letter presents an efficient gridless 2D DOA estimation algorithm for generalized rectangular arrays, including both uniform and sparse arrays. The proposed algorithm achieves high accuracy through a novel approach called generalized matrix‐form atomic norm minimization and provides a fast solution using the alternating direction method of multipliers. Validation through computer simulations and practical experiments underscores its efficacy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.