Abstract
Green indium phosphide (InP)-based quantum dot light-emitting diodes (QD-LEDs) still suffer from low efficiency and short operational lifetime, posing a critical challenge to fully cadmium-free QD-LED displays and lighting1-3. Unfortunately, the factors that underlie these limitations remain unclear and, therefore, no clear device-engineering guidelines are available. Here, by using electrically excited transient absorption spectroscopy, we find that the low efficiency of state-of-the-art green cadmium-free QD-LEDs (which ubiquitously adopt the InP-ZnSeS-ZnS core-shell-shell structure) originates from the ZnSeS interlayer because it imposes a high injection barrier that limits the electron concentration and trap saturation. We demonstrate, both experimentally and theoretically, that replacing the currently widely used ZnSeS interlayer with a thickened ZnSe interlayer enables improved electron injection and depressed leakage simultaneously, allowing to achieve a peak external quantum efficiency of 26.68% and T95 lifetime(time for theluminance to dropto 95% of the initial value) of 1,241 h at an initial brightness of 1,000 cd m-2 in green InP-based QD-LEDs emitting at 543 nm-exceeding the previous best values by a factor of 1.6 and 165, respectively3,4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.