Abstract
This paper proposes a repeated unit cell (RUC) FE modelling strategy for multilayered helical strand cables subject to tensile loading and bending with an initial tensile load. The approach utilises the axial periodicity in helical structures to reduce computational domain to two cable periods. A novel mesh creation method allowing the exact geometry of helical strands to be discretised into solid elements while maintaining flat end surfaces is proposed. Periodic boundary conditions (PBC) allowing for geometric and material nonlinearity are used to implement cyclic loads to study hysteresis in single and multilayered cables. Comparisons made to existing experimental and analytical results validate the models ability to capture hysteresis due to plasticity and geometric effects such as the stick–slip transition in bending. Examination of the cross-sectional stress distribution shows plasticity initiates at contact points at loads which are 25% of the load at which the cable tensile response deviates from linearity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.