Abstract
This paper addresses the problem of efficient routing in unreliable multihop optical networks supported by Wavelength Division Multiplexing (WDM). We first define a new cost model for routing in (optical) WDM networks that is more general than the existing models. Our model takes into consideration not only the cost of wavelength access and conversion but also the delay for queuing signals arriving at different input channels that share the same output channel at the same node. We then propose a set of efficient algorithms in a reliable WDM network on the new cost model for each of the three most important communication patterns-multiple point-to-point routing, multicast, and multiple multicast. Finally, we show how to obtain a set of efficient algorithms in an unreliable WDM network with up to f faulty optical channels and wavelength conversion gates. Our strategy is to first enhance the physical paths constructed by the algorithms for reliable networks to ensure success of fault-tolerant routing, and then to route among the enhanced paths to establish a set of fault-free physical routes to complete the corresponding routing request for each of the communication patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Parallel and Distributed Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.