Abstract
Fault tolerant quantum computing methods which work with efficient quantum error correcting codes are discussed. Several new techniques are introduced to restrict accumulation of errors before or during the recovery. Classes of eligible quantum codes are obtained, and good candidates exhibited. This permits a new analysis of the permissible error rates and minimum overheads for robust quantum computing. It is found that, under the standard noise model of ubiquitous stochastic, uncorrelated errors, a quantum computer need be only an order of magnitude larger than the logical machine contained within it in order to be reliable. For example, a scale-up by a factor of 22, with gate error rate of order $10^{-5}$, is sufficient to permit large quantum algorithms such as factorization of thousand-digit numbers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.