Abstract

The employment of enantioselective transition-metal-catalyzed transformations as key steps in asymmetric natural product syntheses have attracted considerable attention in recent years owing to their versatile synthetic utilities, mild conditions and high efficiency in chirality generation. The chiral catalysts or supporting ligands are believed to be crucial for the requisite reactivity and enantioselectivity. Therefore, the rational design of chiral ligands is at the heart of developing new asymmetric transition-metal catalyzed reactions and provides an avenue to the asymmetric synthesis of natural products. Our group has been engaged in the development of transition-metal-catalyzed enantioselective cross-coupling, cyclization and other related reactions and the application of these methodologies to natural product syntheses. In this account, we summarized our recent synthetic efforts towards the efficient total syntheses of several different types of natural products including terpenes, alkaloids and polyketides facilitated by the design of a series of versatile P-chiral phosphorous ligands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.