Abstract

Exploiting stochastic path-integral theory, we obtain by simulation substantial gains in efficiency for the computation of reaction rates in one-dimensional, bistable, overdamped stochastic systems. Using a well-defined measure of efficiency, we compare implementations of "dynamic importance sampling" (DIMS) methods to unbiased simulation. The best DIMS algorithms are shown to increase efficiency by factors of approximately 20 for a 5k(B)T barrier height and 300 for 9k(B)T, compared to unbiased simulation. The gains result from close emulation of natural (unbiased), instantonlike crossing events with artificially decreased waiting times between events that are corrected for in rate calculations. The artificial crossing events are generated using the closed-form solution to the most probable crossing event described by the Onsager-Machlup action. While the best biasing methods require the second derivative of the potential (resulting from the "Jacobian" term in the action, which is discussed at length), algorithms employing solely the first derivative do nearly as well. We discuss the importance of one-dimensional models to larger systems, and suggest extensions to higher-dimensional systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.