Abstract

Sharp asymptotic lower bounds on the expected quadratic variation of the discretization error in stochastic integration are given when the integrator admits a predictable quadratic variation and the integrand is a continuous semimartingale with nondegenerate local martingale part. The theory relies on inequalities for the kurtosis and skewness of a general random variable which are themselves seemingly new. Asymptotically efficient schemes which attain the lower bounds are constructed explicitly. The result is directly applicable to a practical hedging problem in mathematical finance; for hedging a payoff which is replicated by a continuous-time trading strategy, it gives an asymptotically optimal way to choose discrete rebalancing dates and portfolios with respect to transaction costs. The asymptotically efficient strategies in fact reflect the structure of the transaction costs. In particular, a specific biased rebalancing scheme is shown to be superior to unbiased schemes if the transaction costs follow a convex model. The problem is discussed also in terms of exponential utility maximization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.