Abstract

In the early mammalian embryo, lineage separation of and subsequent crosstalk between the trophectoderm (TE) and inner cell mass (ICM) are required to support further development. Previous studies have shown that the homeobox transcription factor Cdx2 is required for TE differentiation and that lack of Cdx2 expression causes death of embryos at the peri-implantation stage. In this study, we effectively eliminated Cdx2 transcripts by microinjection of siRNA into embryos and evaluated the effect on efficiency of deriving embryonic stem cells (ESCs). By this approach, we successfully created nonviable embryos similar to reported knockout embryos. Accordingly, the efficiency of ESC derivation dropped from 19.1% in control blastocysts to 2% in Cdx2-deficient blastocysts, indicating loss of pluripotency in the ICM. Strikingly, when 8-cell stage embryos were cultured under ESC culture conditions before lineage separation, fully functional pluripotent stem cell lines were obtained, with efficiency even greater than that for control embryos. These results demonstrate that Cdx2 plays an essential role within the microenvironment created by the TE to support ICM pluripotency but that the ESC culture system, with mouse embryonic fibroblasts, could rescue the pluripotent cell population for efficient ESC derivation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.