Abstract

A novel, efficient, deep-blue fluorescent emitter mPAC, with a meta-connected donor-acceptor structure containing phenanthroimidazole (PPI) as the donor and phenylcarbazole-substituted anthracene (An-CzP) as the acceptor, was designed and synthesized. The meta-linkage provided a highly twisted molecular conformation, which efficiently interrupts the intramolecular π-conjugation, resulting in a deep-blue emission. The optimized nondoped device based on mPAC displayed a deep-blue emission with a narrow full width at half-maximum of 56 nm and Commission Internationale de L'Eclairage coordinates of (0.16, 0.09). The maximum external quantum efficiency (EQEmax) is 6.76%, corresponding to a high exciton utilization efficiency (EUE) of 59.3-88.9%. Experimental results and theoretical analysis indicated that the high EUE is mainly ascribed to the reverse intersystem crossing (RISC) from T2 to S1, a "hot exciton" path in which the large T2-T1 energy gap (1.45 eV) and small T2-S1 energy difference (0.18 eV, T2 > S1) hamper the internal crossing from T2 to T1 and facilitate the RISC process. For the hot exciton path, the T2 state can be feasibly arranged to a high energy level, forming a thermal equilibrium with S1, even slightly higher than the deep-blue S1 to realize an exergonic RISC process, which is usually difficult for the thermally activated delayed fluorescence emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.