Abstract
A high-performance cathode consisting of an ultrathin CsF layer and a rare-earth ytterbium (Yb) metal is reported for application in organic electroluminescent devices. Standard tris-(8-hydroxyquinoline) aluminum/α-napthylphenylbiphenyl diamine devices with this bilayer cathode showed dramatically reduced operating voltage and a low turn-on voltage of 2.42 V as compared to 3.75 and 2.95 V in devices using, respectively, the Mg:Ag and single-layer Yb cathodes. At a current density of 200 mA/cm2, devices with the CsF/Yb cathode exhibited high luminance efficiency of 3.45 cd/A and power efficiency of 1.27 lm/W. Analysis by x-ray photoemission spectroscopy suggested that the performance improvement is related to the substantial reduction of electron injection barrier at the cathode/organic interface. It was found that upon Yb deposition, CsF dissociates to liberate low work function Cs metal atoms resulting in a cathode with a lower electron injection barrier and thus a better balance of carriers in the device. Thermodynamically, this exothermic chemical reaction is expected to take place independent of the type of substrates and organic medium, indicating that this bilayer cathode system may be applicable in a wide range of organic electronic/optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.