Abstract

The econometric challenge of finding sparse mean reverting portfolios based on a subset of a large number of assets is well known. Many current state-of-the-art approaches fall into the field of co-integration theory, where the problem is phrased in terms of an eigenvector problem with sparsity constraint. Although a number of approximate solutions have been proposed to solve this NP-hard problem, all are based on relatively simple models and are limited in their scalability. In this paper, we leverage information obtained from a heterogeneous simultaneous graphical dynamic linear model (H-SGDLM) and propose a novel formulation of the mean reversion problem, which is phrased in terms of a quasi-convex minimisation with a normalisation constraint. This new formulation allows us to employ a cyclical coordinate descent algorithm for efficiently computing an exact sparse solution, even in a large universe of assets, while the use of H-SGDLM data allows us to easily control the required level of sparsity. We demonstrate the flexibility, speed and scalability of the proposed approach on S&P500, FX and ETF futures data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.