Abstract

Green synthesis of adipic acid from renewable biomass is a very attractive goal of sustainable chemistry. Herein, we report efficient catalysts for a two-step transformation of cellulose-derived glucose into adipic acid via glucaric acid. Carbon nanotube-supported platinum nanoparticles are found to work efficiently for the oxidation of glucose to glucaric acid. An activated carbon-supported bifunctional catalyst composed of rhenium oxide and palladium is discovered to be powerful for the removal of four hydroxyl groups in glucaric acid, affording adipic acid with a 99 % yield. Rhenium oxide functions for the deoxygenation but is less efficient for four hydroxyl group removal. The co-presence of palladium not only catalyzes the hydrogenation of olefin intermediates but also synergistically facilitates the deoxygenation. This work presents a green route for adipic acid synthesis and offers a bifunctional-catalysis strategy for efficient deoxygenation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.