Abstract

The practical application of Lithium-sulfur (Li-S) batteries is significantly inhibited by (i) the notable ‘shuttle effect’ of lithium polysulfides (LiPS), (ii) the corrosion of the lithium interface, and (iii) the sluggish redox reaction kinetics. The functional separator in the Li-S battery has the potential to provide the perfect solution to these problems. Herein a triple-layer multifunctional PVDF-based nanofiber separator, which contains GoTiN/PVDF layer on the top and bottom and ZnTPP/PVDF layer on the middle, is designed. The polarity and porous structure of this multifunctional separator can greatly improve the wettability of electrolytes and enhance the transportation of Li+. With the zinc-based porphyrin framework (ZnTPP) structure, this separator has a strong chemisorption and LiPS conversion ability, which greatly prevent the ‘shuttle effect’. Consequently, the designed multilayer separator showed excellent electrochemical performance. As a result, the cell with GoTiN@ZnTPP@GoTiN nanofiber membrane displayed an initial discharge capacity of 1180 mAh/g with a benign capacity retention of 65.9% at 0.5C and high coulombic efficiency of more than 98.5% after 100 cycles. Even at 2C, it can still release a capacity of 798 mAh/g. Moreover, the remarkable capacity of 591 mAh/g could be achieved with a high sulfur load of 5.76 mg/cm2 under a current density of 0.1C. Based on these merits, this novel and scalable multifunctional separator is a promising candidate to replace the conventional PP separator for advanced Li-S batteries to deal with various challenges.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.