Abstract

This paper proposes a simulation-based optimization methodology for the efficient calibration of microscopic traffic flow models (i.e., car-following models) of large-scale stochastic network simulators. The approach is a metamodel simulation-based optimization (SO) method. To improve computational efficiency of the SO algorithm, problem-specific and simulator-specific structural information is embedded into a metamodel. As a closed-form expression is sought, we propose adopting the steady-state solution of the car-following model as an approximation of its simulation-based input-output mapping. This general approach is applied for the calibration of the Gipps car-following model embedded in a microscopic traffic network simulator, on a large network. To this end, a novel formulation for the traffic stream models corresponding to the Gipps car-following law is provided.The proposed approach identifies points with good performance within few simulation runs. Comparing its performances to that of a traditional approach, which does not take advantage of the structural information, the objective function is improved by two orders of magnitude in most experiments. Moreover, this is achieved within tight computational budgets, i.e., few simulation runs. The solutions identified improve the fit to the field measurements by one order of magnitude, on average. The structural information provided to the metamodel is shown to enable the SO algorithm to become robust to both the quality of the initial points and the simulator stochasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.