Abstract

Interest is growing in open source tools that let organizations build IaaS clouds using their own internal infrastructures, alone or in conjunction with external ones. A key component in such private/hybrid clouds is virtual infrastructure management, i.e., the dynamic orchestration of virtual machines, based on the understanding and prediction of performance at scale, with uncertain workloads and frequent node failures. Part of the research community is trying to solve this and other IaaS problems looking to Autonomic Computing techniques, that can provide, for example, better management of energy consumption, quality of service (QoS), and unpredictable system behaviors. In this context, we first recall the main features of the NAM framework devoted to the design of distributed autonomic systems. Then we illustrate the organization and policies of a NAM-based Workload Manager, focusing on one of its components, the Capacity Planner. We show that, when it is not possible to obtain optimal energy-aware plans analytically, sub-optimal plans can be autonomically obtained using online discrete event simulation. Specifically, the proposed approach allows to cope with a broader range of working conditions and types of workloads.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.