Abstract

Bulk memory copies incur large overheads such as CPU stalling (i.e., no overlap of computation with memory copy operation), small register-size data movement, cache pollution, etc. Asynchronous copy engines introduced by Intelpsilas I/O Acceleration Technology help in alleviating these overheads by offloading the memory copy operations using several DMA channels. However, the startup overheads associated with these copy engines such as pinning the application buffers, posting the descriptors and checking for completion notifications, limit their overlap capability. In this paper, we propose two schemes to provide complete overlap of memory copy operation with computation by dedicating the critical tasks to a single core in a multi-core system. In the first scheme, MCI (Multi-Core with I/OAT), we offload the memory copy operation to the copy engine and onload the startup overheads to the dedicated core. For systems without any hardware copy engine support, we propose a second scheme, MCNI (Multi-Core with No I/OAT) that onloads the memory copy operation to the dedicated core. We further propose a mechanism for an application-transparent asynchronous memory copy operation using memory protection. We analyze our schemes based on overlap efficiency, performance and associated overheads using several micro-benchmarks and applications. Our microbenchmark results show that memory copy operations can be significantly overlapped (up to 100%) with computation using the MCI and MCNI schemes. Evaluation with MPI-based applications such as IS-B and PSTSWM-small using the MCNI scheme show up to 4% and 5% improvement, respectively, as compared to traditional implementations. Evaluations with data-centers using the MCI scheme show up to 37% improvement compared to the traditional implementation. Our evaluations with gzip SPEC benchmark using application-transparent asynchronous memory copy show a lot of potential to use such mechanisms in several application domains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.