Abstract
Reed–Solomon (RS) codes possess excellent error correction capability. Algebraic soft-decision decoding (ASD) of RS codes can provide better correction performance than the hard-decision decoding (HDD). The low-complexity Chase (LCC) decoding has the lowest complexity cost and similar or even higher coding gain among all of the available ASD algorithms. Instead of employing complicated interpolation technique, the LCC decoding can be implemented based on the HDD. This study proposes a modified serial LCC decoder, which employs a novel syndrome calculation, polynomial selection, Chien search and Forney algorithm block. In addition, an improved two-dimensional optimisation is provided to reduce the hardware complexity of the proposed decoder. Compared with the previous design, the proposed decoder can improve about 1.27 times speed and obtain 1.29 times higher efficiency in terms of throughput-over-slice ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.