Abstract

The efficiency and stability of RNA interference (RNAi) in perennial species, particularly in natural environments, is poorly understood. We studied 56 independent poplar RNAi transgenic events in the field over 2 years. A resident BAR transgene was targeted with two different types of RNAi constructs: a 475-bp IR of the promoter sequence and a 275-bp IR of the coding sequence, each with and without the presence of flanking matrix attachment regions (MARs). RNAi directed at the coding sequence was a strong inducer of gene silencing; 80% of the transgenic events showed more than 90% suppression. In contrast, RNAi targeting the promoter resulted in only 6% of transgenic events showing more than 90% suppression. The degree of suppression varied widely but was highly stable in each event over 2 years in the field, and had no association with insert copy number or the presence of MARs. RNAi remained stable during a winter to summer seasonal cycle, a time when expression of the targeted transgene driven by an rbcS promoter varied widely. When strong gene suppression was induced by an IR directed at the promoter sequence, it was accompanied by methylation of the homologous promoter region. DNA methylation was also observed in the coding region of highly suppressed events containing an IR directed at the coding sequence; however, the methylation degree and pattern varied widely among those suppressed events. Our results suggest that RNAi can be highly effective for functional genomics and biotechnology of perennial plants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.