Abstract

One concerned issue in the routing protocol for wireless sensor networks (WSNs) is how to provide with as much security to some special applications as possible. Another is how to make full use of the severely limited resource presented by WSNs. The existing routing protocols in the recent literatures focus either only on addressing security issues while expending much power or only on improving lifetime of network. None of them efficiently combine the above-mentioned two challenges to one integrated solutions. In this paper, we propose efficient and secure routing protocol based on encryption and authentication for WSNs: BEARP, which consists of three phases: neighbor discovery phase, routing discovery phase, and routing maintenance phase. BEARP encrypts all communication packets and authenticates the source nodes and the base station (BS), and it ensures the four security features including routing information confidentiality, authentication, integrity, and freshness. Furthermore, we still design routing path selection system, intrusion detection system, and the multiple-threaded process mechanism for BEARP. Thus, all the secure mechanisms are united together to effectively resist some typical attacks including selective forwarding attack, wormhole attacks, sinkhole attacks, and even a node captured. Our BEARP especially mitigates the loads of sensor nodes by transferring routing related tasks to BS, which not only maintains network wide energy equivalence and prolongs network lifetime but also improves our security mechanism performed uniquely by the secure BS. Simulation results show a favorable increase in performance for BEARP when compared with directed diffusion protocol and secure directed diffusion protocol in the presence of compromised nodes.

Highlights

  • A wireless sensor network (WSN) is a collection of nodes that can form a network without the need of a fixed infrastructure, which operates in an unattended, sometimes hostile, environment

  • We propose a new routing protocol BEARP: efficient and secure routing protocol based on encryption and authentication for WSNs

  • We will analyze the security properties of BEARP required by sensor networks and present how BEARP defends some typical attacks in the WSN

Read more

Summary

Introduction

A wireless sensor network (WSN) is a collection of nodes that can form a network without the need of a fixed infrastructure, which operates in an unattended, sometimes hostile, environment. Lee and Choi have presented SeRINS [14]: a secure alternate path routing in sensor networks Their alternate path scheme makes the routing protocol resilient in the presence of compromised nodes that launch selective forwarding attacks. The contributions of our work include the following: (1) we implement the four security features for WSNs including routing information confidentiality, authentication, integrity, and freshness, and BEARP works well under some typical attacks; (2) BEARP has much better packet delivery ratio than DD protocol in the presence of some compromised nodes; (3) the network lifetime is prolonged compared to insecure routing protocols, like DD protocol; (4) BEARP has almost no blocked nodes in WSNs and remarkably surpasses DD protocol.

Notations and Assumptions
Security Analysis of BEARP
Performance Evaluations and Analyses
Findings
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.