Abstract
Geobacter species, exhibiting exceptional extracellular electron transfer aptitude, hold great potential for applications in pollution remediation, bioenergy production, and natural elemental cycles. Nonetheless, a scarcity of well-characterized genetic elements and gene expression tools constrains the effective and precise fine-tuning of gene expression in Geobacter species, thereby limiting their applications. Here, we examined a suite of genetic elements and developed a new genetic editing tool in Geobacter sulfurreducens to enhance their pollutant conversion capacity. First, the performances of the widely used inducible promoters, constitutive promoters, and ribosomal binding sites (RBSs) elements in G. sulfurreducens were quantitatively evaluated. Also, six native promoters with superior expression levels than constitutive promoters were identified on the genome of G. sulfurreducens. Employing the characterized genetic elements, the clustered regularly interspaced short palindromic repeats interference (CRISPRi) system was constructed in G. sulfurreducens to achieve the repression of an essential gene-aroK and morphogenic genes-ftsZ and mreB. Finally, applying the engineered strain to the reduction of tungsten trioxide (WO3 ), methyl orange (MO), and Cr(VI), We found that morphological elongation through ftsZ repression amplified the extracellular electron transfer proficiency of G. sulfurreducens and facilitated its contaminant transformation efficiency. These new systems provide rapid, versatile, and scalable tools poised to expedite advancements in Geobacter genomic engineering to favor environmental and other biotechnological applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.