Abstract
The potential of capillaries noncovalently coated with a bilayer of oppositely charged polymers for the analysis of peptides by CE-MS was investigated. Bilayer coatings were produced by subsequently rinsing fused-silica capillaries with a solution of Polybrene (PB) and poly(vinyl sulfonate) (PVS). The PB-PVS coating showed to be fully compatible with MS detection causing no ionization suppression or background signals. The bilayer coating provided a considerable EOF at low pH, thereby facilitating the fast separation of peptides using a BGE of formic acid (pH 2.5). Under optimized CE-MS conditions, for enkephalin peptides high separation efficiencies were obtained with plate numbers in the range of 300,000-500,000. It is demonstrated that both the cancellation of the hydrodynamic capillary flow induced by the nebulizer gas and a sufficiently high-data acquisition rate are crucial for achieving these efficiencies. The overall performance of the CE-MS system using PB-PVS-coated capillaries was evaluated by the analysis of a tryptic digest of cytochrome c. The system provided an efficient separation of the peptide mixture, which could be effectively monitored by MS/MS detection allowing identification of at least 13 peptides within a time interval of 1.5 min. In addition, the PB-PVS coating proved to be very consistent yielding stable CE-MS patterns with highly favorable migration time reproducibilities (RSDs < 1% over a 3-day period).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.