Abstract

Previous chapter Next chapter Full AccessProceedings Proceedings of the 2011 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)Efficient algorithms for some special cases of the polynomial equivalence problemNeeraj KayalNeeraj Kayalpp.1409 - 1421Chapter DOI:https://doi.org/10.1137/1.9781611973082.108PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstract We consider the following computational problem. Let F be a field. Given two n-variate polynomials f(x1, …, xn) and g(x1, …, xn) over the field F, is there an invertible linear transformation of the variables which sends f to g? In other words, can we substitute a linear combination of the xi's for each xj appearing in f and obtain the polynomial g? This problem is known to be at least as difficult as the graph isomorphism problem even for homogeneous degree three polynomials. There is even a cryptographic authentication scheme (Patarin, 1996) based on the presumed average-case hardness of this problem. Here we show that at least in certain (interesting) special cases there is a polynomial-time randomized algorithm for determining this equivalence, if it exists. Somewhat surprisingly, the algorithms that we present are efficient even if the input polynomials are given as arithmetic circuits. As an application, we show that if in the key generation phase of Patarin's authentication scheme, a random multilinear polynomial is used to generate the secret, then the scheme can be broken and the secret recovered in randomized polynomial-time. Previous chapter Next chapter RelatedDetails Published:2011ISBN:978-0-89871-993-2eISBN:978-1-61197-308-2 https://doi.org/10.1137/1.9781611973082Book Series Name:ProceedingsBook Code:PR138Book Pages:xviii-1788

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.