Abstract

Sommerfeld-integrals (SIs) are ubiquitous in the analysis of problems involving antennas and scatterers embedded in planar multilayered media. It is well known that the oscillating and slowly decaying nature of their integrands makes the numerical evaluation of the SI real-axis tail segment a very time consuming and computationally expensive task. Therefore, SI tails have to be specially treated. In this paper we compare two recently developed techniques for their efficient numerical evaluation. First, a partition-extrapolation method, in which the integration-then-summation procedure is combined with a new version of the weighted averages (WA) extrapolation technique, is summarized. The previous variants of WA technique are also discussed. Then, a review of double-exponential (DE) quadrature formulas for direct integration of the SI tails is presented. The efficient way of implementing the algorithms, their pros and cons, as well as comparisons of their performance are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.