Abstract

The performance and temporal variation of four hybrid, intermittent loading, pilot-scale vertical flow constructed wetlands (VFCWs) were tested for treating domestic wastewater of three different C/N ratios (2.5:1, 5:1, and 10:1, respectively). Two hybrid systems each consisted of the two identical VFCWs in-series, with up–up or down–down flow. The other two hybrid systems consisted of the first VFCWs (up or down flow) followed by a second VFCWs (down or up flow, respectively). The effects of combination mode, season, load level, and interactions on nutrient removal were studied in synthetic wastewater in the two-stage VFCW systems. With varying C/N ratios for influent water (from 2.5:1, 5:1 to 10:1) average removal efficiencies for the two-bed two-stage systems were as follows: COD 73–93%, TN 46–87%, TP 75–90%, and TOC 40–66%, respectively. All two-bed hybrid VFCWs were efficient in removing organics and total phosphorus, and reached the highest removal rates when the C/N ratios were 10 and 5, respectively. The hybrid systems for different flow direction beds had significantly higher performance ( P < 0.05) during the wetlands operational period. Compared to the four types of hybrid VFCWs, the two-stage combination with different flow directions achieved significantly higher TN and TOC reductions ( P < 0.05). The highest total nitrogen ( P < 0.05) and total phosphorus reductions in down–up flow VFCWs were observed at C/N 5:1. However, for organic matter and total organic carbon, the highest COD and TOC removal rates occurred when C/N ratios were 5–10 for the down–up flow VFCWs. With appropriate control of combined mechanisms in series, the concentrations of carbon and nitrogen sources in the influent can achieve the optimal effects of nutrient removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.