Abstract
High rates of hydrogen photoproduction are obtained when glutaraldehyde-fixed Photosystem I-enriched vesicles (Photosystem II-depleted) are added to hydrogenase-containing cells of Proteus mirabilis in the presence of the mediator methylviologen and a suitable electron donating system. This donor system includes ascorbate, dithioerythritol (DTE) and the mediator tetramethylphenylene-diamine (TMPD) and reduces the photosynthetic electron transfer chain at the level of plastocyanin. Both DTE and ascorbate are required for hydrogen photoproduction, DTE being the ultimate electron donor and ascorbate only having a catalytic function. Whereas the aerobic photoreduction of methylviologen is similar in the presence of DTE, ascorbate or both, under anaerobic conditions only combination of both compounds results in a high and stable amount of reduced methylviologen that can be utilized by the hydrogenase. It is concluded that oxidation reactions of reduced methylviologen, competing with the hydrogenase, rather than methylviologen photoreduction, limit hydrogen photoproduction in the presence of either DTE or ascorbate. These oxidation reactions are suggested to involve back reactions to the oxidized form(s) of ascorbate and DTE but backflow to the photosynthetic electron transfer chain (i.e. cyclic electron transfer) can not be excluded.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.