Abstract
Efficiency of different types of immersed boundary methods in the fluid structure interaction (FSI) analysis is studied for different cases. Two different formulations of smoothed profile method (SPM) [1, 2] as diffuse interface approaches are compared with the ghost fluid method (GFM) [3, 4] as sharp interface method (SIM) [5]. First, the original SPM which has two pressure Poisson equations (SPM2P) is modified to a novel formulation for SPM with only one pressure Poisson equation (SPM1P) and then validated. The efficiency study is performed for SPM1P, SPM2P and SIM. The results show that when the solid object is fixed, the explicit solution of SIM is faster than the two SPMs. However, when the solid is moving and strongly coupled formulations is used, SPM1P will be the fastest method. It is shown that the efficiency of the strongly coupled formulations depends on the number of subiterations required in each time step to reach the converged implicit solution. SPM1P and SPM2P need less number of subiterations in comparison with SIM and they are faster. When the added mass effect is high, the efficiency of SPM becomes more noticeable as the required number of subiterations is significantly less in SPM. Finally, SPM1P is faster than SPM2P in all cases however, the accuracy of SPM2P in predicting the flow pattern is better than SPM1P.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have