Abstract

Among Series-Parallel Hybrid Electric Vehicle (SPHEV) powertrains, the Power-Split architecture with a planetary gear has an exemplary energetic efficiency in mixed driving conditions. Nevertheless, a simple SPHEV architecture can be realized without a planetary gear. It consists of 2 Electric Machines (EM) mounted on the engine shaft and separated by a clutch. With no power-split operation, this architecture allows the vehicle to operate in pure electric, or series hybrid, or parallel hybrid mode. It was proven to be less efficient than a reference Power-Split SPHEV: the Toyota Hybrid System (THS). The aim of this paper is to investigate the potential of efficiency improvement of the simple SPHEV powertrain by topology modification: the addition of gears for the components or a gearbox with few number of ratios. Two new variants of SPHEVs are proposed. The versions of SPHEVs and the reference THS are optimized by a bi-level optimization technique using Genetic Algorithm and Dynamic Programming. Compared to the simple SPHEV, results show an efficiency worsening in one variant and an efficiency improvement in another variant with a fuel consumption comparable to the one of THS. A global sensitivity study is then performed on the worsened variant. The sensitivities of the added gears are determined and an elimination of some is suggested. A new variant with fewer gears is therefore proposed and optimized. The efficiency is improved but remains less than the one of THS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.