Abstract
Background and Objectives Connecting the contralateral upper molars by means of a transpalatal arch (TPA) is thought to decrease the tendency of the molars to move mesially in response to orthodontic force (i.e., provide orthodontic anchorage). This study was hence conducted to investigate the effects of the TPA on the displacement of the molars and stresses generated in the periodontium during orthodontic tooth movement using the finite element method (FEM). Materials and Methods A three-dimensional (3D) model was generated using medical modeling software (Mimics) using the computed tomography slice images of the skull which were obtained at a slice thickness of 1 mm. From this, the finite element model was built using HyperMesh and analysis was performed using PATRAN software (MSC Software Corporation, 4675 MacArthur Court, Newport Beach, California 92660). The 3D finite element models were fabricated in two versions such as maxillary first molars including their associated periodontal ligament and alveolar bone one with TPA and another without TPA. Both were subjected to orthodontic forces, and the resultant stress patterns and displacements between the models with and without TPA were determined. Results The stress and displacement plots in this study failed to show any significant differences in stress and displacement within the periodontium of molars, between the two models – one with TPA and the other without, in response to the orthodontic force. Interpretation and Conclusion The results of the current finite element analysis, therefore, suggest that the presence of a TPA brings about no change in the initial dental and periodontal stress distribution and displacement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.