Abstract

The purpose of this article was to determine the effectiveness of laser delay by use of the flashlamp-pumped pulsed-dye laser operating at a wavelength of 585 nm; to elucidate the comparable or dissimilar macroscopic, microscopic, and hemodynamic changes between laser and surgical delay methods; and to clarify the possible mechanisms underlying the delay effect of laser. A standardized caudally based random dorsal rat flap model was used in this study: Acute random skin flaps served as control subjects (group 1). Surgical delay was employed by incision of lateral longitudinal borders both without (group 2) and with (group 3) undermining, and laser delay methods were performed by laser irradiation of both lateral longitudinal borders (group 4) and the entire surface (group 5) of the proposed flap. Evaluation was done by histologic examination, India ink injection, laser Doppler perfusion imaging, and measurement of flap survival. Histologically, dilation and hypertrophy of subpapillary and subdermal vessels were evident in groups 2, 3, and 4; on the other hand, degranulation of mast cells in the vicinity of occluded vessels at the 1st hour of laser delay and a striking mast cell proliferation and degranulation in association with newly formed vessels (angiogenesis) at the 14th day of laser delay were prominent in group 5. India ink injections revealed longitudinally arranged large-caliber vessels and cross-filling between the vessels of adjacent territories in groups, 2, 3, and 4, but only small-caliber vessels in group 5. Compared with the acute flaps, both surgical and laser delay significantly increased the mean flap perfusion to the maximal levels after a 14-day delay period, and all delay procedures improved flap survival; the most significant increase in surviving area was observed in group 3, whereas the less significant increase in surviving area was in group 5. This study demonstrates that laser delay is as effective as surgical delay and that laser delay by lasering lateral borders leads to dilation and longitudinal rearrangement of the existing vessels rather than angiogenesis, whereas laser delay by lasering the entire surface results in delay effect by inducing angiogenesis due to activation and degranulation of the mast cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.