Abstract

LiNi0.8Mn0.1Co0.1O2 (NMC811) is a popular cathode material for Li-ion batteries, yet degradation and side reactions at the cathode-electrolyte interface pose significant challenges to their long-term cycling stability. Coating LiNixMnyCo1−x−yO2 (NMC) with refractory materials has been widely used to improve the stability of the cathode-electrolyte interface, but mixed results have been reported for Al2O3 coatings of the Ni-rich NMC811 materials. To elucidate the role and effect of the Al2O3 coating, we have coated commercial-grade NMC811 electrodes with Al2O3 by the atomic layer deposition (ALD) technique. Through a systematic investigation of the long-term cycling stability at different upper cutoff voltages, the stability against ambient storage, the rate capability, and the charger transfer kinetics, our results show no significant differences between the Al2O3-coated and the bare (uncoated) electrodes. This highlights the contentious role of Al2O3 coating on Ni-rich NMC cathodes and calls into question the benefits of coating on commercial-grade electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.