Abstract

AbstractThe use of superhydrophobic/superamphiphobic surfaces demands the presence of a stable plastron, i.e., a film of air between micro‐ and nanostructures. Without actively replenishing the plastron with gases, it eventually disappears during immersion. The air diffuses into the immersion liquid, i.e., water. Current methods for sustaining the plastron under immersion remain limited to techniques such as electrocatalysis, electrolysis, boiling, and air‐refilling. These methods are difficult to implement at scale, are either energy‐consuming, or require continuous monitoring of the plastron (and subsequent intervention). Here, the concept of passive on‐demand recovery of the plastron via the use of a chemical reaction (effervescence) is presented. A superhydrophobic nanostructured surface is layered onto a wetting‐reactive, gas‐forming (effervescent) sublayer. During extended exposure to moisture, the effervescent layer must be protected by a moisture‐absorbent, water‐soluble polymer. Under prolonged immersion, partial collapse of the Cassie‐state induces contact of water with the effervescent layer. This induces the local formation of gases from effervescence, which restores the Cassie‐state. These facile and scalable design principles offer a new route toward intervention‐free and immersion‐durable superhydrophobic/superamphiphobic surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.