Abstract

Ga-doped ZnO (GZO) transparent conductive oxide thin films were deposited on flexible polyethersulphone (PES) substrates by radio-frequency sputtering at room temperature. With the addition of an optimized 100-nm-thick ZnO buffer layer, the transmittance, carrier concentration, Hall mobility, and resistivity of GZO films improved from 88.3 to 94.45%, −2.89 × 1021 to −3.39 × 1021 cm−3, 1.76 to 7.97 cm2/V-s, and 1.32 × 10−3 to 2.201 × 10−4 Ω-cm, respectively. The higher surface energy (49.85 mJ/m2) of the 100-nm-thick ZnO layer deposited on the PES substrate compared to those of a bare PES substrate and ZnO layers of other thicknesses deposited on PES substrates is likely responsible for the superior GZO quality obtained with the GZO/100-nm-thick ZnO buffer/PES structure. Moreover, the best adhesion at the GZO surface was observed for the GZO/100-nm-thick ZnO buffer/PES structure based on it having the highest surface energy (67.33 mJ/m2). The GZO/100-nm-thick ZnO buffer/PES structure thus has potential to replace the GZO/PES structure for use in flexible transparent optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.