Abstract

Prospective beneficial effects of mixtures of temperature-adaptive solid lubricants (ZnO–MoS2) on mechanical and tribological properties of M50 alloy steel were investigated at temperatures from 25 to 800 °C. ZnO and MoS2 were mixed with M50 (designated as M) to create composites MZ (M50 steel plus ZnO), MM (M50 steel plus MoS2), and MZM (M50 steel plus both additives). Sliding friction and wear experiments were performed at different temperatures using a pin-on-disk at a sliding speed of 0.2 m s−1 and a load of 12 N. Silicon nitride and M50 steel were used as the pin materials. In order to understand the friction and wear behavior of composites, analyses of their surfaces were done using XRD, EPMA, FESEM, EDS line/mapping, and XPS tests. A dynamic simulation model based on the finite element method was built to simulate the different stresses on the contact pairs. Results elucidated that MZM attained the least friction (0.17), compared to M (0.40), MZ (0.26), or MM (0.29) at 800 °C. The increase in surface roughness of MZM due to sliding was reduced by 37.3% compared to that of MZ (11.9%) or MM (22.7%). The good lubricating behaviors were referred to the synergetic effects of ZnO, MoS2, and formed lubricating components on worn surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.