Abstract

Zinc is a mineral that plays a vital role in many biological processes and plays an important role in insulin action and carbohydrate metabolism. It may also have a protective role in the prevention of atherogenesis. Numerous studies have evaluated the effects of Zinc supplementation on serum lipids in humans and have demonstrated varying results. We systematically evaluated the literature and performed a meta-analysis on the effects of Zinc supplementation on serum lipids. A five staged comprehensive search of the literature was conducted in the following databases; PubMed, Web of Science and SciVerse Scopus for studies published before 31st December 2014. All controlled clinical trial in humans, that included a Zinc supplement intervention, either alone or in combination with other micronutrients and evaluated effects on serum lipids (total cholesterol [TC], triglycerides [TG], LDL cholesterol [LDL-c] and HDL cholesterol [HDL-c]). A meta-analysis of selected studies was performed using RevMan v5.3. The Jaded scale was used to assess the methodological quality of the trials included in the systematic review. A total of 24 studies were included in Meta analysis, which included a total of 33 Zinc interventions, in a total of 14,515 participants in the Zinc intervention or control group. The duration of Zinc supplementation ranged from 1 month to 7.5 years. The dose of elemental Zinc supplemented ranged from 15–240 mg/day. The pooled mean difference for TC between Zinc supplemented and placebo groups from random effects analysis was −10.92 mg/dl (95 % CI: −15.33, −6.52; p < 0.0001, I2 = 83 %), while for HDL cholesterol it was 2.12 mg/dl (95 % CI: −0.74, 4.98; p = 0.15, I2 = 83 %). The pooled mean difference for LDL-c between Zinc supplemented and placebo group from random effect analysis was −6.87 mg/dl (95 % CI: −11.16,-2.58; p < 0.001, I2 = 31) and for TG it was −10.92 mg/dl (95 % CI: −18.56, − 3.28; p < 0.01, I2 = 69 %). In conclusion, Zinc supplementation has favourable effects on plasma lipid parameters. Zinc supplementation significantly reduced total cholesterol, LDL cholesterol and triglycerides. Therefore it may have the potential to reduce the incidence of atherosclerosis related morbidity and mortality.

Highlights

  • Zinc is a mineral that plays a vital role in many biological processes, such as enzyme action, cell membrane stabilization, gene expression and cell signaling [1]

  • Screening records after duplicate removal records screened full text articles assessed for eligibility studies included in qualitative synthesis studies included in quantitative synthesis (Meta analysis) records excluded after screened by reading the article title and abstract full text articles excluded studies excluded 6 poor methodological quality and/or insufficient data for abstraction 1 observational study 1 results presented as Median values

  • When analyzed by health status, Zinc supplementation reported a significant reduction in total cholesterol (TC), LDL cholesterol (LDL-c) and TG levels in non-healthy patients and the magnitude of reduction was greater than that in overall analysis

Read more

Summary

Introduction

Zinc is a mineral that plays a vital role in many biological processes, such as enzyme action, cell membrane stabilization, gene expression and cell signaling [1]. It is required for structural and functional integrity of more than 2000 transcription factors and 300 enzymes; almost all metabolic pathways are in some ways reliant on at least one Zinc requiring protein [2, 3]. Zinc plays an important role in insulin action and carbohydrate metabolism [4]. It is estimated that Zinc deficiency is a major factor contributing to 1.4 % of deaths worldwide [8]. Zinc deficiency is associated with many diseases, including malabsorption syndrome, chronic liver disease, chronic renal disease, sickle cell

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.