Abstract

This study investigates the effect of wire feeding direction on the microstructure of 316 stainless steel during the laser-directed energy deposition (L-DED) process. The process parameters were optimised by varying the scan speed, laser power, and wire feed rate to identify a common parameter set for all feed directions to give desired weld bead geometries. The identified process parameter window has shown that the conduction mode is preferred over the balling and keyhole modes. Comprehensive microstructural characterization using optical and electron microscopy has revealed that for the same parameters, the front wire feed had higher penetration, while the back wire feed had a wider bead with optimal penetration. The current findings are of significance for advancing wire-L-DED additive manufacturing for more complex component designs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.