Abstract

This study aims to explore the use of non-chemical addition in improving the functions of meat proteins in broilers transported during summer. The effects of a water-misting spray with forced ventilation on heat induced ground meat gelation in broilers were investigated through rheology, texture, and nuclear magnetic resonance analyses. The facilities of water-misting sprays with forced ventilation characterized with an extremely thin droplet (diameter: approximately 0.05 mm) and supplying updraughting air ventilation in an enclosed space were examined. For comparison, typical processing treatments using sodium bicarbonate or sodium tripolyphosphate were performed to grind the broiler meat which had not undergone water-misting and forced ventilation. Results showed that transport for 45-min followed by application of water-misting spray with forced ventilation for 15-min and resting for 45-min (TWFR) increased water holding capacity (WHC) by 2.51%; this finding was not significantly different from the effect of transport for 45 min followed by 1 h rest and sodium tripolyphosphate treatment (TRT) on meat batter (P > 0.05). TWFR treatment exhibited the highest storage modulus increase among four samples well as significant higher hardness and chewiness values on than those of sample treated with 45-min transport and 1-h rest (TR) (P < 0.05). TWFR, 45 min of transport, 1 h rest, and addition of sodium bicarbonate (TRB) and TRT induced T22 (relaxation time of water trapped within myofibrils) shift to shorter relaxation time and narrower relaxation distribution compared with TR. Overall, TWFR treatment can be a potential non-chemical addition method for improving the heat induced gelation protein function after broiler undergoing summer transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.